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Self-organized criticality and universality in a nonconservative earthquake model

Stefano Lise and Maya Paczuski
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~Received 2 August 2000; published 21 February 2001!

We make an extensive numerical study of a two-dimensional nonconservative model proposed by Olami,
Feder, and Christensen to describe earthquake behavior@Phys. Rev. Lett.68, 1244~1992!#. By analyzing the
distribution of earthquake sizes using a multiscaling method, we find evidence that the model is critical, with
no characteristic length scale other than the system size, in agreement with previous results. However, in
contrast to previous claims, we find a convergence to universal behavior as the system size increases, over a
range of values of the dissipation parametera. We also find that both ‘‘free’’ and ‘‘open’’ boundary conditions
tend to the same result. Our analysis indicates that, asL increases, the behavior slowly converges toward a
power law distribution of earthquake sizesP(s);s2t with an exponentt.1.8. The universal value oft we
find numerically agrees quantitatively with the empirical value (t5B11) associated with the Gutenberg-
Richter law.
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I. INTRODUCTION

Earthquakes may be the most dramatic example of s
organized criticality~SOC! @1,2# that can be observed b
humans on earth. Most of the time the crust of the earth i
rest, or quiescent. These periods of stasis are punctuate
sudden, thus far unpredictable, bursts, or earthquakes.
cording to the empirical Gutenberg-Richter~GR! law @3#, the
distribution of earthquake events is scale free over many
ders of magnitude in energy. The GR scaling extends fr
the smallest measurable earthquakes, which are equivale
a truck passing by, to the most disastrous that have b
recorded, where hundreds of thousands of people have
ished.

The relevance of SOC to earthquakes was first pointed
by Bak and Tang@4#, Sornette and Sornette@5#, and Ito and
Matsusaki@6#. According to this theory, plate tectonics pr
vides energy input at a slow time scale into a spatially
tended, dissipative system that can exhibit breakdown ev
via a chain reaction process of propagating instabilities
space and time. The GR law arises from the system of dri
plates building up to a critical state with avalanches of
sizes. These above-mentioned authors used a spatially
tended~but conservative! cellular automata model as a pro
totype resembling earthquake dynamics, which gave a po
law distribution of avalanches, or earthquakes. This was
lowed by a study using block-spring models@7#, by Carlson
and Langer@8#, who found characteristic earthquake siz
rather than asymptotic critical behavior. Later studies o
continuous ‘‘train’’ block-spring model by de Sousa Viei
@9# recovered criticality. The train model describes a driv
elastic chain sliding over a surface with friction. It was co
jectured to be in the same universality class as interface
pinning and a model of avalanches in granular piles, wh
agrees with numerical simulation results@10#.

Several groups made lattice representations of the blo
spring model. These models were nonconservative@11,12#
and were driven uniformly, but did not display SOC. Th
Olami, Feder, and Christensen~OFC! introduced a noncon
1063-651X/2001/63~3!/036111~5!/$15.00 63 0361
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servative model on a lattice that displayed SOC@13#. In this
simplified earthquake model, sites on a lattice are conti
ously loaded with a force. After a threshold force is reach
the sites transfer part of their force to their local neighb
hood when discharging. Each discharge event is accom
nied by a local loss in accumulated force from the syste
when the force on each element is reset to zero. A unifo
driving force is slowly applied to all the elements, and t
model is completely deterministic. This conceptually simp
and seemingly numerically tractable model reproduces so
of the qualitative phenomenology of the statistics of ear
quake events such as power law behavior over a rang
sizes, intermittency or clustering of large events@13#, and
lack of predictability@14#.

Although SOC and this type of modeling approach ha
been more or less accepted as reasonable descriptions o
phenomena of earthquakes~see, for example, Ref.@15#, and
references therein!, the OFC model itself has had a contr
versial existence, both on the theoretical@16–19# and nu-
merical sides@13,20–25#. Initial numerical studies found tha
the distribution of earthquake sizes obeyed finite size sca
~FSS! over the range of system sizes that could be studie
the time @13#. This placed the nonconservative model in
the framework of standard critical behavior. However, the
simulations also indicated that there was no universality
particular the exponents characterizing the power law dis
butions appeared to vary with both the dissipation param
a and the form of the boundary condition. If this were th
case then the OFC model would be very different from
miliar critical systems where most microscopic details a
irrelevant and have no effect on critical coefficients. In fa
an argument was made@13# that one should not expect un
versal behavior in far from equilibrium critical phenomen
If this were correct, it would drastically limit the applicatio
of any known theoretical tools to these problems.

Another strange aspect was that the dimensionD charac-
terizing the scaling of the cutoff in the earthquake size d
tribution was found numerically to be larger than 2. This
inconsistent with the fact that each site can only discharg
©2001 The American Physical Society11-1
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finite number of times in an earthquake event, requiringD
<2 for the two-dimensional nonconservative model@16#.
This last result, together with the strange lack of universal
cast some doubt on whether the OFC model was actu
critical or just close to being critical, with some large, as y
undetermined, length scale beyond which the earthquake
tribution would always be cut off. Hwa and Kardar as well
Grinsteinet al. postulated that conservation of the quant
being transported was required for criticality@26#, but the
theoretical arguments made do not take into account S
phenomena such as avalanches and long-term memory
ciated with the self-organization process~for more details,
see Ref.@27#!. The fact that the random neighbor version
the nonconservative OFC model is never critical, but has
essential singularity as the conservative limit is approac
@18,19#, has added to the mystery surrounding the beha
of the lattice model.

In a previous large scale numerical simulation study
the model discussed here, Grassberger@22# also claimed that
the model was critical, but found that some of the conc
sions of OFC ‘‘have to be modified considerably.’’ He a
gued that the integrated probability distribution of ear
quake sizes does not show ordinary FSS over the la
range of systems he was able to study, and ‘‘conjecture~d!
that the cutoff of Pint(s) becomes a step function fo
L→`,’’ although he did not present direct numerical ev
dence of this. Note that here we study the ordinary proba
ity distribution of earthquake sizes and not the integra
distribution.

There are a number of important, unresolved questi
about the behavior of the model, which have enormous
plication for any type of eventual theoretical understandi
Is the nonconservative model on a lattice~or for fixed con-
nectivity matrix! critical? If so, is the critical behavior of the
model universal over a range of values ofa, or for different
boundary conditions? Is it described by a power-law dis
bution at all? Are there any other universal quantities? W
type of data analysis technique besides FSS would be us
to extract the large scale behavior of the nonconserva
model? Our numerical study and analysis will address th
issues and answer those questions.

Summary

In the first section we review the definition of the OF
model and present some numerical data for the distribu
of earthquake sizes using standard FSS. For the rang
lattice sizes we have simulated~up to linear sizeL5512),
our data confirm the lack of apparent FSS in the mod
particularly in the cutoff region. In Sec. III, we present a
extensive set of results using a multiscaling method. We a
lyze the rescaled probability distribution, logP(s)/logL @28#,
in terms of the quantityDav[ logs/logL, with s being the
size of an earthquake. We observe that there are no
lanches withDav larger than 2, consistent with the boun
imposed on the cutoffsco ~see the previous discussion!. By
analyzing how this distribution behaves for different valu
of the nonconservation parametera and system sizeL, we
show how the multiscaled probability distribution tends
03611
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converge to a universal curve asL increases. The direction o
convergence on increasingL changes asa varies, enabling
us to put fairly firm limits on the asymptotic curve. Th
model appears not be to described at all by FSS. Howe
for s,sco , the distribution converges toward a power la
with a universal exponentt.1.8 over a range ofa values.
Moreover the cutoff in this distribution becomes very sha
as L increases, and its behavior indicates thatsco
→const(a)L2 asL→`. In Sec. IV we summarize our mai
conclusions.

II. DEFINITION OF THE MODEL

We consider a two-dimensional square lattice ofL3L
sites. At each sitei, a forceFi is assigned to be a real var
able. Initially, the force at each site is chosen randomly fr
a uniform distribution between 0 and 1. The dynamics p
ceeds by two steps in the limit of infinite time scale sepa
tion between the slow drive, representing motion of the t
tonic plates, and the earthquake process@13#.

~1! Increase the force at all sites: Find the largest fo
Fmax in the system and increase the force at all sites by
same amount 12Fmax.

~2! Relax all unstable sites, i.e., sites withFi>1: The
force of an unstable site is reset to zero,Fi→0, and a frac-
tion of it, aFi , is distributed to each of its four neare
neighbors:Fnn→Fnn1aFi . This step is repeated in a pa
allel update until there are no unstable sites left.

This two step rule is iterated indefinitely. The sequence
toppling events@step~2!# between application of the uniform
drive @step ~1!# defines an avalanche or earthquake. Sin
only a fraction 4a of the force is redistributed in each top
pling, the model is nonconservative fora,1/4.

To completely define the model we need to specify
boundary conditions, by defining the dissipation parame
a, at the sites on the boundaries (abc). As in OFC, we con-
sider both ‘‘free’’ and ‘‘open’’ boundary conditions. The
sites on the boundaries of the system can be considered
bounded by fictitious sites withFi52`, which can never
discharge and only absorb force from the boundary sites
the case of open boundary conditions, the sites at the bo
ary have the samea parameter as all other sites in the bu
(abc5a). In the case of free boundary conditions, the si
at the boundary have theira parameters modified in order t
have the same level of dissipation per reset event as for
in the bulk. This latter condition impliesabc5a/(12a),
except at corner sites whereabc,c5a/(122a). The model
with periodic boundary conditions is not critical@21–23#,
and will not be discussed. It is probably worthwhile to u
derline at this point that the model is completely determin
tic, the only possible source of randomness coming from
initial conditions.

After a transient period of many earthquakes, the mo
settles into a statistically stationary state. One way to ch
acterize this state is to measure statistical properties of
earthquakes. The size of an earthquake,s, is defined as the
number of resets of the local forceFi→0 in the system in
between applications of the uniform force. One can a
measure the temporal durationt in terms of the parallel up-
date, or the radius of gyrationr of the sites which partici-
pated in the earthquake event.
1-2
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Finite-size scaling

We focus on the probability distribution of earthqua
sizes,s, in a system of sizeL, PL(s). If the model is critical
then this distribution will have no scale other than the phy
cal extentL and the lattice constant, which is set to uni
One ansatz that can describe critical behavior is the F
ansatz that was previously used by OFC,

PL~s!;L2bGS s

LDD , ~1!

where G is a suitable scaling function, andb and D are
critical exponents describing the scaling of the distribut
function. As shown in Fig. 1, the model does not exhi
FSS. In this figure we choseD52 as the largest possibl
allowed value. Still the cutoff in the ‘‘collapsed’’ probability
distribution moves to the right asL increases. Nevertheles
for earthquake sizes smaller than the cutoff, this figure sh
what appears to be a convergence to a well-defined po
law, PL(s);s2t, as L increases with the power law expo
nent t5b/D.1.8 for botha50.18 and 0.21, and possibl
also fora50.15.

III. MULTISCALING ANALYSIS

The FSS ansatz is only one possible description of crit
behavior. As pointed out some time ago by Kadanoffet al.,
some SOC phenomena are better described by a multifra
ansatz, rather than FSS@29#. This form was recently used t
clarify the behavior of the Bak-Tang-Weisenfeld@1# model
by Stella and co-workers, who measured different mome
associated with the distribution@30#. For the OFC model, it
appears to us that a clearer picture can be obtained by sim
examining the probability distribution directly.

FIG. 1. Finite-size scaling plots ofPL(s) in systems with open
boundary conditions for~a! a50.15, ~b! a50.18, and ~c! a
50.21. The critical exponents areD52 andb53.6, and the slope
of the straight line ist51.8. Statistics are derived from at least 19

avalanches per data set. For visual clarity, curves~b! and ~c! have
been shifted along the horizontal axis,x→x11 andx→x12, re-
spectively.
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The multiscaling ansatz postulates for the probability d
tribution functionPL(s) a form

log PL~s/so!

log~L/ l o!
5FS logs/so

logL/ l o
D , ~2!

whereso and l o are parameters which typically~but not al-
ways! reflect phenomena at small scales associated with
lattice @28#. Usually, a multiscaling analysis consists
choosing these two parameters in order to obtain the
collapse for different system sizes. This is quite differe
than FSS, where the critical exponents themselves, reflec
behavior at large scales, must be chosen in anad hocmanner
in order to obtain the ‘‘best’’ collapse. We do not attempt
collapse the data using the multiscaling form of Eq.~2!. In-
stead, we definel o5so51 to represent the smallest eart
quake which occurs at only one site and involves only o
discharge. Moreover, we define the dimension of an ea
quake of sizes in a systems of sizeL as

Dav5 logs/ logL,

and we denote withDmax the largest value ofDav .
In Fig. 2 we show the multiscaled probability distributio

according to Eq.~2!, for different system sizes fora50.21.
One observes immediately that all avalanches have dim
sion Dav,2, as required, with the largest dimensionDmax
approaching 2 as the system size increases. Also it is c
that the shape of the cutoff function is sharpening as
system size increases. Since the largest dimensionDmax can-
not be larger than 2, we can infer from this that the cut
region narrows to the regionDav→2, and becomes increas
ingly sharp.

Note that the increase ofDmax as L increases is totally
inconsistent with the notion that the OFC model is sligh
off criticality, because in that case one would expect that
relative size of the largest dissipating events with respec
the maximum total force allowed in the system would d
crease in larger systems. In fact what happens is exactly
opposite. In larger systems a larger fraction of the total

FIG. 2. Multiscaling plot ofPL(s) for a50.21 and open bound
ary conditions. The slope of the straight line ist51.8.
1-3
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STEFANO LISE AND MAYA PACZUSKI PHYSICAL REVIEW E63 036111
ergy can be dissipated in the largest event that occurs,
Dmax increases withL. This result is completely consisten
with the nonconservative model being critical, rather th
slightly off criticality.

In order to get more explicit visual information on th
probability distribution, we try to subtract out the leadin
asymptotic term, which we propose is a power law, as s
gested by Fig. 2. This is

log PL~s!

log~L !
5F~Dav!52~tDav!1Fcuto f f~Dav!, ~3!

whereFcuto f f in the limit L→` should be constant up to
cutoff nearDmax. We obtain a consistent picture for a ran
of a values by choosingt51.8, as shown in Fig. 3. Al-
though it appears for small system sizes that smaller va
of a give a steeper distribution with a larger value oft ~so
the lines tend to decrease from left to right rather than
maining horizontal!, it is clear from this figure that as th
system size increases all the different values ofa appear to
reach the same value oft51.8, corresponding to a com
pletely horizontal line in this figure. The deviation for sma
systems is more pronounced fora50.15, and less again fo
a50.18, becoming the smallest fora50.21. Fora closer to
the conservative limit, as shown fora50.23, the approach to
the asymptotic horizontal behavior changes direction. T
is, smaller systems appear to have a smaller exponentt than
larger systems, at least for small avalanches. Thus, ra
than having the slope increase asL increases, fora.
;0.21 the apparent slope decreases asL increases, as clearl
demonstrated in this figure.

We ascribe the change of direction to a crossover effec
the conservative fixed point. Fora close to 1/4, smaller ava

FIG. 3. Plots ofFcuto f f for ~a! a50.15, ~b! a50.18, ~c! a
50.21, and~d! a50.23; we sett51.8. Boundary conditions are
open. Different curves correspond, from left to right, toL
532,64,128,256, and 512.
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lanches behave as avalanches would in the conservative
tem. It is only the larger avalanches that are affected
nonconservative dissipation. This is associated with the
that asa approaches 1/4, each site can topple more and m
times in a single earthquake. For any finite value of dissi
tion (124a), the maximum number of times that a site c
reset in an earthquake is determined by this dissipation an
finite in the limit of largeL. However for small systems, th
largest avalanches are not large enough to be affected
dissipation, and the cutoff in the number of times that a s
can topple is not determined by (124a) but byL. Then the
cutoff in the number of topplings at a given site is the sa
as in a conservative system of the same size.

The results we have described thus far are for the mo
with open boundary conditions. Figure 4 shows that the sa
behavior occurs for the OFC model with free boundary co
ditions, with the same valuet51.8. In this case, the
asymptotic behavior asL increases is approached for d
creasing apparent slope for botha50.17 and 0.20, as is
plainly evident in the figure. Again the cutoff appears
sharpen asL increases and approachesDmax52.

Our analysis indicates that the OFC model exhibits S
with a universal power law distribution of eventsP(s)
;s21.8 for logs,(DmaxlogL). As shown in Fig. 3, the cutoff
becomes sharper and sharper asL increases, withDmax ap-
proaching 2 from below asL increases for all values ofa we
have studied. As indicated above, the incorrect results
tained by OFC were due to the fact that there is a stro
system size dependence that varies witha, and is not de-
scribed by FSS. In addition to a systematic change in ap
ent t as L increases, the largest dimension of earthquak
Dmax, increases only slowly toward 2, and the probabil
distribution of the avalanche dimensions becomes sharpe
the cutoff. This means that large avalanches are suppre

FIG. 4. Plots ofFcuto f f in systems with free boundary cond
tions for~a! a50.17 and~b! a50.20. The exponent has been set
t51.8 as before. System sizes areL532, 64, 128, 256, and 512
1-4



th
‘‘fi

S

on
lf

an
et
no
s

tri-
sal
o-
n
s is
r

ful
ript.
o.

SELF-ORGANIZED CRITICALITY AND UNIVERSALITY . . . PHYSICAL REVIEW E63 036111
in small systems relative to the total amount of force in
system as compared to a larger system, and that a FSS
for anyL range will always give an apparentD.2, which is
not allowed. In this sense the model appears to violate F
for all values ofL.

IV. CONCLUSIONS

The main results of this paper are as follows: The n
conservative model on a two-dimensional lattice se
organizes into a critical state. The critical state is robust
universal over a range of values of the dissipation param
a, and for different boundary conditions. The model does
exhibit finite-size scaling. The cutoff becomes sharper aL
increases with largest earthquakes of dimensionDmax, ap-
f
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et
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proaching 2 from below. Nevertheless, the probability dis
bution of earthquake sizes is a power law with a univer
exponentt.1.8. This value can be identified with an exp
nent B5t21 for the distribution of energy dissipated i
earthquakes. According to the Gutenberg-Richter law thi
a power law withB50.8–1, completely consistent with ou
result.
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