PHYSICAL REVIEW E, VOLUME 63, 036111
Self-organized criticality and universality in a nonconservative earthquake model
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We make an extensive numerical study of a two-dimensional nonconservative model proposed by Olami,
Feder, and Christensen to describe earthquake beH#&hgs. Rev. Lett68, 1244(1992]. By analyzing the
distribution of earthquake sizes using a multiscaling method, we find evidence that the model is critical, with
no characteristic length scale other than the system size, in agreement with previous results. However, in
contrast to previous claims, we find a convergence to universal behavior as the system size increases, over a
range of values of the dissipation parametekVe also find that both “free” and “open” boundary conditions
tend to the same result. Our analysis indicates that, e&reases, the behavior slowly converges toward a
power law distribution of earthquake sizB¢s)~s™ " with an exponent=1.8. The universal value of we
find numerically agrees quantitatively with the empirical value=B+ 1) associated with the Gutenberg-

Richter law.
DOI: 10.1103/PhysRevE.63.036111 PACS nun)er05.40—-a, 91.30.Px
[. INTRODUCTION servative model on a lattice that displayed S{A@G]. In this

simplified earthquake model, sites on a lattice are continu-

Earthquakes may be the most dramatic example of selfeusly loaded with a force. After a threshold force is reached,
organized criticality(SOQ [1,2] that can be observed by the sites transfer part of their force to their local neighbor-
humans on earth. Most of the time the crust of the earth is @tood when discharging. Each discharge event is accompa-
rest, or quiescent. These periods of stasis are punctuated bied by a local loss in accumulated force from the system,
sudden, thus far unpredictable, bursts, or earthquakes. Agvhen the force on each element is reset to zero. A uniform
cording to the empirical Gutenberg-Richt&R) law [3], the  driving force is slowly applied to all the elements, and the
distribution of earthquake events is scale free over many omodel is completely deterministic. This conceptually simple
ders of magnitude in energy. The GR scaling extends fronand seemingly numerically tractable model reproduces some
the smallest measurable earthquakes, which are equivalent o the qualitative phenomenology of the statistics of earth-
a truck passing by, to the most disastrous that have beeguake events such as power law behavior over a range of
recorded, where hundreds of thousands of people have pesizes, intermittency or clustering of large evefis], and
ished. lack of predictability[14].

The relevance of SOC to earthquakes was first pointed out Although SOC and this type of modeling approach have
by Bak and Tand4], Sornette and Sornet{&], and Ito and been more or less accepted as reasonable descriptions of the
Matsusaki[6]. According to this theory, plate tectonics pro- phenomena of earthquakésee, for example, Ref15], and
vides energy input at a slow time scale into a spatially ex+eferences thereinthe OFC model itself has had a contro-
tended, dissipative system that can exhibit breakdown eventgersial existence, both on the theoreti¢ab6—-19 and nu-
via a chain reaction process of propagating instabilities irmerical side$13,20—25. Initial numerical studies found that
space and time. The GR law arises from the system of drivethe distribution of earthquake sizes obeyed finite size scaling
plates building up to a critical state with avalanches of all(FSS over the range of system sizes that could be studied at
sizes. These above-mentioned authors used a spatially efte time[13]. This placed the nonconservative model into
tended(but conservativecellular automata model as a pro- the framework of standard critical behavior. However, these
totype resembling earthquake dynamics, which gave a powesimulations also indicated that there was no universality. In
law distribution of avalanches, or earthquakes. This was folparticular the exponents characterizing the power law distri-
lowed by a study using block-spring mod¢i, by Carlson  butions appeared to vary with both the dissipation parameter
and Langer{8], who found characteristic earthquake sizes,« and the form of the boundary condition. If this were the
rather than asymptotic critical behavior. Later studies of acase then the OFC model would be very different from fa-
continuous “train” block-spring model by de Sousa Vieira miliar critical systems where most microscopic details are
[9] recovered criticality. The train model describes a drivenirrelevant and have no effect on critical coefficients. In fact
elastic chain sliding over a surface with friction. It was con-an argument was madé3] that one should not expect uni-
jectured to be in the same universality class as interface derersal behavior in far from equilibrium critical phenomena.
pinning and a model of avalanches in granular piles, whicHf this were correct, it would drastically limit the application
agrees with numerical simulation resulfi]. of any known theoretical tools to these problems.

Several groups made lattice representations of the block- Another strange aspect was that the dimeng&locharac-
spring model. These models were nonconservdtiie12]  terizing the scaling of the cutoff in the earthquake size dis-
and were driven uniformly, but did not display SOC. Thentribution was found numerically to be larger than 2. This is
Olami, Feder, and Christens¢®FC) introduced a noncon- inconsistent with the fact that each site can only discharge a
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finite number of times in an earthquake event, requilihg converge to a universal curve bsncreases. The direction of
<2 for the two-dimensional nonconservative modl&6].  convergence on increasiigchanges asg varies, enabling
This last result, together with the strange lack of universalityus to put fairly firm limits on the asymptotic curve. The
cast some doubt on whether the OFC model was actualljnodel appears not be to described at all by FSS. However,
critical or just close to being critical, with some large, as yetfor s<sg,, the distribution converges toward a power law
undetermined, length scale beyond which the earthquake di¥\ith a universal exponent=1.8 over a range o& values.
tribution would always be cut off. Hwa and Kardar as well asMoreover the cutoff in this distribution becomes very sharp
Grinsteinet al. postulated that conservation of the quantity@S L INCreases, and its behavior indicates thsg,
being transported was required for criticaliig6], but the =~ —COnst@)L” asL—c. In Sec. IV we summarize our main
theoretical arguments made do not take into account SOEoNclusions.
phenomena such as avalanches and long-term memory asso-
ciated with the self-organization procedsr more details, IIl. DEFINITION OF THE MODEL
see Ref[27]). Thg fact that the ra_ndom neig_h_bor version of  \ve consider a two-dimensional square latticeLof L
the nonconservative OFC model is never critical, but has agjtes. At each sité, a forceF; is assigned to be a real vari-
essential singularity as the conservative limit is approachegpie. Initially, the force at each site is chosen randomly from
[18,19, has added to the mystery surrounding the behaviog uniform distribution between 0 and 1. The dynamics pro-
of the lattice model. ceeds by two steps in the limit of infinite time scale separa-
In a previous large scale numerical simulation study oftion between the slow drive, representing motion of the tec-
the model discussed here, Grassbefgéf also claimed that tonic plates, and the earthquake prodgsy.
the model was critical, but found that some of the conclu- (1) Increase the force at all sites: Find the largest force
sions of OFC “have to be modified considerably.” He ar- F,,, in the system and increase the force at all sites by the
gued that the integrated probability distribution of earth-same amount +F .
quake sizes does not show ordinary FSS over the larger (2) Relax all unstable sites, i.e., sites wih=1: The
range of systems he was able to study, and “conje@dire force of an unstable site is reset to zeffg-— 0, and a frac-
that the cutoff of P,(s) becomes a step function for tion of it, aF;, is distributed to each of its four nearest
L—,” although he did not present direct numerical evi- neighbors:F,,—F.,+aF;. This step is repeated in a par-
dence of this. Note that here we study the ordinary probabilllel update until there are no unstable sites left.

ity distribution of earthquake sizes and not the integrated This two step rule is iterated indefinitely. The sequence of
distribution. toppling eventgstep(2)] between application of the uniform

There are a number of important, unresolved questiond/ve [step (1)] defines an avalanche or earthquake. Since

about the behavior of the model, which have enormous impnly a fraction 4“ of the force is .redistributed in each top-
ng, the model is nonconservative far<1/4.

plication for any type of eventual theoretical understanding.pII . .

Is the nonconservative model on a latti@e for fixed con- To complete_ly define the_model we_nged to specify the
nectivity matrix critical? If so, is the critical behavior of the boundary gondmons, by defm;ng the d|s_S|pat|on parameter,
model universal over a{ rangé of valuesagfor for different a, at the sites on the boundaries,(). As in OFC, we con-

" . . ... sider both “free” and “open” boundary conditions. The
boundary conditions? Is it described by a power-law distri-gjsag on the boundaries of the system can be considered to be
bution at all? Are there any other universal quantities? Whaj, \nded by fictitious sites with; = —o, which can never
type of data analysis technique besides FSS would be usefy|scharge and only absorb force from the boundary sites. In
to extract the large scale behavior of the nonconservativghe case of open boundary conditions, the sites at the bound-
model? Our numerical study and analysis will address thosgry have the same parameter as all other sites in the bulk
issues and answer those questions. (ape= ). In the case of free boundary conditions, the sites
at the boundary have their parameters modified in order to
have the same level of dissipation per reset event as for sites
in the bulk. This latter condition implieg,.=a/(1—a),

In the first section we review the definition of the OFC except at corner sites wherg,. .= @/(1—2a). The model
model and present some numerical data for the distributiogith periodic boundary conditions is not critich21-23,
of earthquake sizes using standard FSS. For the range aghd will not be discussed. It is probably worthwhile to un-
lattice sizes we have simulatédp to linear sizeL =512),  derline at this point that the model is completely determinis-
our data confirm the lack of apparent FSS in the modeliic, the only possible source of randomness coming from the
particularly in the cutoff region. In Sec. Ill, we present an initial conditions.
extensive set of results using a multiscaling method. We ana- After a transient period of many earthquakes, the model
lyze the rescaled probability distribution, 1&¢s)/logL [28], settles into a statistically stationary state. One way to char-
in terms of the quantityD,,=logs/logL, with s being the  acterize this state is to measure statistical properties of the
size of an earthquake. We observe that there are no aveaarthquakes. The size of an earthquakes defined as the
lanches withD,, larger than 2, consistent with the bound number of resets of the local fordg—0 in the system in
imposed on the cutof$., (see the previous discussjoiBy  between applications of the uniform force. One can also
analyzing how this distribution behaves for different valuesmeasure the temporal duratiomn terms of the parallel up-
of the nonconservation parameterand system sizé, we  date, or the radius of gyration of the sites which partici-
show how the multiscaled probability distribution tends topated in the earthquake event.

Summary
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FIG. 2. Multiscaling plot ofP| (s) for «=0.21 and open bound-

FIG. 1. Finite-size scaling plots d¥,(s) in systems with open . i e
ary conditions. The slope of the straight lineris 1.8.

boundary conditions fora) «=0.15, (b) «=0.18, and(c) «
=0.21. The critical exponents al2=2 andg= 3.6, and the slope
of the straight line isr=1.8. Statistics are derived from at leasf 10
avalanches per data set. For visual clarity, cui®sand (c) have
been shifted along the horizontal axis»>x+1 andx—x+2, re-
spectively. log P, (s/s,) _ (Iog s/so)
log(L/l,) logL/l,)’

. o wheres, andl, are parameters which typicallput not al-
We focus on the probability distribution of earthquake ways reflect phenomena at small scales associated with the

tsr'lzest’f]'.'ndatsyst?m Of.ﬁ'?" PL(s). lflthet?:Odtil IS fk:'t'cil _lattice [28]. Usually, a multiscaling analysis consists of
en this distribution witl have no scaie other than the p .ys"choosing these two parameters in order to obtain the best
cal extentL and the lattice constant, which is set to unity.

: " O ollapse for different system sizes. This is quite different
One ansatz that can describe critical behavior is the FS an FSS, where the critical exponents themselves, reflecting
ansatz that was previously used by OFC,

behavior at large scales, must be chosen iachhocmanner
s in order to obtain the “best” collapse. We do not attempt to
pL(S)NL—BG(_D> , (1) collapse the data using the multiscaling form of E2). In-
stead, we definé,=s,=1 to represent the smallest earth-
quake which occurs at only one site and involves only one
where G is a suitable scaling function, andl and D are  discharge. Moreover, we define the dimension of an earth-
critical exponents describing the scaling of the distributionquake of sizes in a systems of sizé as
function. As shown in Fig. 1, the model does not exhibit
FSS. In this figure we chosB=2 as the largest possible D,,=logs/logL,
allowed value. Still the cutoff in the “collapsed” probability
distribution moves to the right ds increases. Nevertheless, and we denote witlD ., the largest value oD, .
for earthquake sizes smaller than the cutoff, this figure shows In Fig. 2 we show the multiscaled probability distribution
what appears to be a convergence to a well-defined poweéccording to Eq(2), for different system sizes fox=0.21.
law, P (s)~s" 7", asL increases with the power law expo- One observes immediately that all avalanches have dimen-
nent r=B/D=1.8 for botha=0.18 and 0.21, and possibly Sion D,,<2, as required, with the largest dimensibn,
also fora=0.15. approaching 2 as the system size increases. Also it is clear
that the shape of the cutoff function is sharpening as the
system size increases. Since the largest dimeri3jgnp can-
not be larger than 2, we can infer from this that the cutoff
The FSS ansatz is only one possible description of criticategion narrows to the regioR,,— 2, and becomes increas-
behavior. As pointed out some time ago by Kadamatfal,  ingly sharp.
some SOC phenomena are better described by a multifractal Note that the increase d,,,4 as L increases is totally
ansatz, rather than F§39]. This form was recently used to inconsistent with the notion that the OFC model is slightly
clarify the behavior of the Bak-Tang-Weisenfdlt] model  off criticality, because in that case one would expect that the
by Stella and co-workers, who measured different momentselative size of the largest dissipating events with respect to
associated with the distributidr30]. For the OFC model, it the maximum total force allowed in the system would de-
appears to us that a clearer picture can be obtained by simplyease in larger systems. In fact what happens is exactly the
examining the probability distribution directly. opposite. In larger systems a larger fraction of the total en-

The multiscaling ansatz postulates for the probability dis-
tribution functionP(s) a form

@

Finite-size scaling

IIl. MULTISCALING ANALYSIS
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FIG. 3. Plots ofF.,¢s for (8 «=0.15, (b) «=0.18, (¢) « ) ) .
=0.21, and(d) «=0.23; we setr=1.8. Boundary conditions are _ FIG. 4. Plots ofF s in systems with free boundary condi-
open. Different curves correspond, from left to right, to  tions for(a) a=0.17 andb) «=0.20. The exponent has been set to
=32,64,128,256, and 512. 7=1.8 as before. System sizes &re 32, 64, 128, 256, and 512.

ergy can be dissipated in the largest event that occurs, ad{anchtlats_behaﬁvetﬂs ellvalanchesl Wowd mﬂ:h? consef;va:lv&e zys-
Dmax increases withL. This result is completely consistent em. 1 1s only the larger avalanches that are atlected by

with the nonconservative model being critical, rather thannonconserva’tive dissipation. This is associated with the fact
slightly off criticality ’ that asa approaches 1/4, each site can topple more and more
In order to get more explicit visual information on the times in a single earthquake. For any finite value of dissipa-

probability distribution, we try to subtract out the leading ion (1~4a), thhe miXimu? num_be:jog tirrr:_esd'gha_t a site cag_
asymptotic term, which we propose is a power law, as Sug?eset.m ‘1” elgr'g ql}f? € ISL thermme f yt 'S” Issipation T}n IS
gested by Fig. 2. This is inite in the limit of largeL. However for small systems, the

largest avalanches are not large enough to be affected by
dissipation, and the cutoff in the number of times that a site
= =_ can topple is not determined by {4 «) but byL. Then the
log(L) F(Da))= = (mDa)* FouordPa). - (3) cutoff in the number of topplings at a given site is the same
as in a conservative system of the same size.
whereF . i0¢¢ In the limit L—o should be constant up to a  The results we have described thus far are for the model
cutoff nearD 4. We obtain a consistent picture for a range with open boundary conditions. Figure 4 shows that the same
of a values by choosing=1.8, as shown in Fig. 3. Al- behavior occurs for the OFC model with free boundary con-
though it appears for small system sizes that smaller valueditions, with the same valuer=1.8. In this case, the
of a give a steeper distribution with a larger valuemofso  asymptotic behavior a& increases is approached for de-
the lines tend to decrease from left to right rather than reereasing apparent slope for both=0.17 and 0.20, as is
maining horizontal it is clear from this figure that as the plainly evident in the figure. Again the cutoff appears to
system size increases all the different valuestadppear to  sharpen as increases and approachBs, = 2.
reach the same value af=1.8, corresponding to a com- Our analysis indicates that the OFC model exhibits SOC
pletely horizontal line in this figure. The deviation for small with a universal power law distribution of evenf(s)
systems is more pronounced fer=0.15, and less again for ~s~18for logs<(DnaxlogL). As shown in Fig. 3, the cutoff
a=0.18, becoming the smallest far=0.21. Fora closerto  becomes sharper and sharperLasicreases, witlD ., ap-
the conservative limit, as shown far=0.23, the approach to proaching 2 from below als increases for all values af we
the asymptotic horizontal behavior changes direction. Thahave studied. As indicated above, the incorrect results ob-
is, smaller systems appear to have a smaller expon#rdn  tained by OFC were due to the fact that there is a strong
larger systems, at least for small avalanches. Thus, ratheystem size dependence that varies withand is not de-
than having the slope increase &sincreases, fora> scribed by FSS. In addition to a systematic change in appar-
~0.21 the apparent slope decreasek axreases, as clearly ent 7 asL increases, the largest dimension of earthquakes,
demonstrated in this figure. Dmax, increases only slowly toward 2, and the probability
We ascribe the change of direction to a crossover effect oflistribution of the avalanche dimensions becomes sharper at
the conservative fixed point. Far close to 1/4, smaller ava- the cutoff. This means that large avalanches are suppressed

logPy(s)
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in small systems relative to the total amount of force in theproaching 2 from below. Nevertheless, the probability distri-
system as compared to a larger system, and that a FSS “fitbution of earthquake sizes is a power law with a universal
for anyL range will always give an apparebt>2, whichis  exponentr=1.8. This value can be identified with an expo-
not allowed. In this sense the model appears to violate FS8ent B=r—1 for the distribution of energy dissipated in
for all values ofL. earthquakes. According to the Gutenberg-Richter law this is
a power law withB=0.8—1, completely consistent with our
IV. CONCLUSIONS result.

The main results of this paper are as follows: The non-
conservative model on a two-dimensional lattice self-
organizes into a critical state. The critical state is robust and
universal over a range of values of the dissipation parameter We thank K. Christensen and H. J. Jensen for helpful
«, and for different boundary conditions. The model does notonversations, and P. Bak for comments on the manuscript.
exhibit finite-size scaling. The cutoff becomes sharpet.as S.L. was supported by the EPSRC of the UK, Grant No.
increases with largest earthquakes of dimendgn,, ap- GR/M10823/01.
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